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TABLE II

TMior TMioe
Qox  Qpexs (ka)ex 2a/No Qex  Quert (ka)ex 2a/Xo
& = 14 6 4.1 4.21 0.358 11.3 7.9 7.69 0.635
50 84 97 4.38 0.210 23.7 19 7.59 0.364
86 330 375 4.43 0.152 62.5 74 7.61 0.261
Po = j(4n/Ne¢)ka? sin kail,
Q = N°/2k,%a?. (70)

The values ka = 4.49 and ka = 7.73 yield, respectively,
the TM;; and TMye modes of Gastine, for which the re-
sults shown in Table I1 hold.
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The Excitation of Dielectric Resonators of Very

High Permittivity

JEAN VAN BLADEL, FELLOW, IEEE

Abstract—-The response of 4 dielectric resonator excited by
either interior volume sources or incident exterior waves is investi~
gated. Special attention is devoted to phenomena at resonance, and
in particular to the induced electric and magnetic dipoles. Simple
formulas are obtained for the scattering cross section. The material
of the resonator is assumed lossless and of very high permittivity.

1. INTRODUCTION
N A PRIECEDING article [ 1] we have investigated the

nature and properties of the modes of a dielectric
resonator of very high permittivity. In the present paper
we make use of the modal properties, and in particular of
the orthogonality relationships, to investigate the excita-
tion of a resonator by interior volume sources or, more
realistically, by exterior incident fields. Our general method
of attack is to assume that the index of refraction IV of the
(lossless) dielectric is large, and to expand the fields as
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These expansions are inserted in Maxwell’s equations, and
terms of equal orders on both sides of these equations are
equated. The mechanics of the procedure will be described
in subsequent paragraphs. Our main purpose is to deter-
mine the dominant terms in (1), and in particular the
behavior of these terms in the vicinity of a resonance
k = k,. In the limit N — o, the magnetic field H, near
resonance must be proportional to the relevant eigenvector

H,,, solution of [17,

—curl cutl H,, + kniH,, = 0 inVv

curl ,, = 0 in V', (2)
These eigenvectors satisfy the important orthogonality
properties [17]
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/ff H,-H,dV =0
V4V
/f/ curl H,-curl H,dV = 0.
14

II. EXCITATION OF A DIELECTRIC RESONATOR
BY INTERIOR SOURCES—GENERAL FORMULAS

The configuration of interest is depicted in Fig. 1. It is
shown in [1] that the expansion for £ contains only odd
terms in 1/N, hence that the dominant term of the expan-
sion is E;/N. We shall expand E; in the (orthogonal) set
curl H,. This set is solenoidal, and should be completed
by irrotational elements.! The latter, however, do not give
rise to resonance phenomena [27]. We shall therefore keep
only solenoidal terms in the expansion for Ey, and write
the following expression (which represents the solenoidal
part of Ey)

(B st = Zameurl Hy = 3 andm

where

(3)

nV (4

/f Er-curl H,, AV
v

///V]curlfldeV.

To evaluate the numerator, consider the basic differential
equation for £y, which can easily be derived from Maxwell’s
equations

.

(5)

—~curl curl By + 2B, = jkRoJ . (6)

Here k is the wavenumber in the dielectrie, and Ry =
1207Q is the characteristic resistance of vacuum. Dot-
multiplying (6) with 4, = curl H,, gives, after integra-
tion over V,

—/// A,.-curl curl £, dV + k2 // Ap-ErdV
14 v
— kR, f / FoA,dv. (7)
’ 14

L The irrotational elements, which should be included in regions
where real charges are present, are of the form grad ¢,, where

Vi, + ki, = 0 in ¥V
V%, = 0 in Vv’
¢» continuous on S
¢n regular at infinity (.e., of order 1/R).
It is easy to show that grad ¢, is orthogonal to H,, and curl H,,, in

the sense that
/:/. H,,-grad ¢, dV
V4V

./:/:/; curl H,,-grad ¢, dV

It is also easy, making use of [, eq. 20] to calculate the expansion
coefficient of £; in terms of grad ¢, and to show that it does not
evidence any resonance properties.

It
=

0.
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Fig. 1. Dielectric resonator with interior sources.

The first integral can be transformed as follows

I = —/f[ A,,-curl curl B, dV
v

= -—f/f Ei-curl curl 4,, AV
v

+ f / [ X An) -ourl By — (dn X ) -curl 4,]dS.
S

(8)
From (2), and because (see [1, eq. 3])

curl E’1 = —“]kRoE_Io (9)

we find
I= —km2// By A, dV
v
— jkRq / f (5 X ourl ) -y dS
S

. km2R0
TR

+ J[ e (o X curl 1) . (10)
S

The surface integrals in the second member can be trans-

formed by the methods utilized in [ 1, egs. 1824 ]. Detailed

calculations, not to be given here in detail, show that

these integrals cancel each other. We can now combine

(7) and (10) to obtain
kR, f f / J A, dV
v

A.-E = 1
//V 1dv k2 — k2 (1)
from which we deduce the expansion
E1 = NE’
// J+curl H, dV
V -
= jkRy 3. curl H,,.
(2 — k) [[[ (curl )2 av
14
(12)

The magnetic field can similarly be expressed as



210

ff J-curl H,, dV
fo v
H,

B — o
/f/[eurlﬁmlzdv
1’4

]f Fecurl A, dV
V -

H,.
(K2 — Jon?) f/fml @, [2dv

Here use has been made of the relationship between
normalization integrals (see [1, eq. 28]).

f/VI curl B, |? dV = k,,,zf// | B, 12dV. (14)

VAv/

H0='—'Z

>

(13)

The expansions for £ and H show that the fields reach
infinite values at the resonant wavenumbers k = k,. In
fact, if we denote by Ak the wavenumber difference
k — km, Hoy near resonance is given by

.///J--curlﬁde
14

2(Ak/lom) ///Vl curl @, |2 dV

H, (15)

Expression (15) represents the magnetic field in the limit
N — . For high, but finite values of N, two things will
happen. First, the resonant frequency suffers a slight
shift. This is a minor phenomenon, which will not be
investigated here. Second, the infinite resonant amplitude
is leveled off by the radiation losses, which introduce a
finite @, and a factor [(Ak/k.) — (j/2Q)] instead of
Ak/kyin (15). Thus

f/ Jeeurl H, dV
v

2(Ak/kn — §/20Q) ///lcurl . |2dv

H~ —

H,. (16)

The numerator [[[yJ-curl H,, dV expresses the cou-
pling between the mode and the current distribution.
For a source in the form of a concentrated electric dipole
P., for example,

///f-curl H,.dV = curl ﬁm/f/j dV = joP,-curl H,

(17)

where curl H,, is the value at the location of the dipole.
For a coneentrated magnetic dipole P,
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/f j-curl ﬁm dV = kmzpm'ﬁm (18)

where H,, is the value at the location of the dipole.

III. EXCITATION BY INTERIOR SOURCES—
VERIFICATION OF THE FORMULAS

A. Sphere Excited by a Magnetic Dipole

Equations such as (12), (13), or (16) are new, and
must therefore be checked against configurations for
which an exact solution exists. We have performed this
verification in two cases. First, we have investigated a
dielectric sphere excited by a magnetic dipole located
at its center [Fig. 2(a)] This configuration happens to
be of technical interest, as the radiation resistance of the
dipole at resonance peaks to a substantially higher value
than in free space. This property allows one to match the
very low impedance of electrically short antennas to their
feeding generators. Considerable reduction of antenna
dimensions compared with the usual half- and quarter-
wave antennas can then be obtained [37], [4]. Our purpose,
however, is not to dwell upon these aspects, but to solve
the problem theoretically. Separation of variables yields
a solution which is valid for arbitrary N, and which allows
detailed investigation of the limit process N — «. The
electric field is purely azimuthal. Inside the resonator it is

iy kie;;m Bing (sir;g]ch k& co; kR) (1)
Outside
Es = — fﬁ; P,, sin 6C (eXp E“ng/ )]
+J%GXP [-jl(ekR/N) ]> 20)

We shall not evaluate coeflicients B and C explicitly: they
can easily be obtained from an application of the boundary
conditions at B = a. The calculations show that B and C
have a common denominator

ka . 1 .
D = sin ka —i—jﬁasmka—i—ﬁ(kacoska—smka).

(21)

Assume first that N is infinite. For such case, the denomina-
tor is zero for sin ka = 0, i.e., precisely at the resonant
frequencies of the ¢g-independent nonconfined modes given
by [1, eqs. 63, 647]. The fields are infinite at resonance,
and it can be verified that the values of B and C are
exactly those predicted by (12) and (18). Let us now
examine the effeet of a high, but finite N. The most
interesting phenomenon is the leveling off of the resonance
peak. The exact values of the fields can again be obtained
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o

(b)

Fig. 2. Dielectric sphere excited by the following. (a) A magnetic
dipole. (b) An electric dipole.

from a study of the coefficients B and C. The common
denominator in these expressions takes the form

kna

a cos kna [Ak 4 = + JAk —-—] . (22)

This formula shows that the resonant frequency is shifted
to a slightly different value, given by

1
km’=km(1—ﬁ).

The frequency-excursion with respect to k,’ is Ak’ =
k — k. In terms of this increment, (22) can be written as
Ak’ ’M]

kma cos kna [—la — 7 I

(23)

But the characteristic denominator for a damped resonance
is of the form [(Ak/k) — (]/2Q)] We conclude that the
quality factor of the mode is given by

N3

Q= 2kma

(24)

which is precisely the value calculated by other means in
[1, eq. 66]. There is therefore agreement with the factor
[(Ak/kn) — (7/2Q)] appearing in the denominator of
(16). Detailed calculations confirm the correctness of the
other factors in (16). They also show that the fields peak
to values proportional to N3 (for H) and N? (for E) in
the vicinity of the sphere, and to N in the far field.

B. Sphere Excited by an Electric Dipole

Let us now investigate the fields produced by an electric
dipole in the center of the sphere [Fig. 2(b)]. Here (17)
predicts that the confined modes only are excited, hence
that the boundary surface acts as a magnetic wall. These
predictions are confirmed by an exact analysis, which can
be carried much as in the preceding paragraph. The
magnetic field is azimuthal in this case, and is given by

. ke . exp (—jkR) . exp (—jkR))
Hy =j oy P,sin @ ( 7o + jk 7
sin kR cos kR
— — K 2
—I-j4NPs1n0B( =2 o 7 ) (25)

in the dielectric, and
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. ke ) exp [—j(kR/N)]
H¢=3mPesm€C< JR2
jk exp [—j(kR/N) ])
+5 7 (26)

outside the dielectric. The coefficients B and C, which can
be determined through the boundary conditions at R = a,
have the common denominator

. ka1 jka
D,—- (ka cos ka — sin ka) (1 + ¥ N3>

k*a® cos ka K3a® sin La
TN T T

(27)

For N — =, resonances occur for ka cos ka — sin ka = 0,
i.e., precisely for the resonant frequéncies of the (¢-
independent) confined modes given in [1, eq. 67]. For N
high, but finite, the resonant frequency is shifted to a new
value, obtained by setting the real part of the denominator
equal to zero. This gives the new wavenumber

, 1
ko =k’"<1_']v§>‘

A few calculations show that D can be put in the form

AL ]
D = —k,2?sin ko (lm ;—Q>

(28)

where
NS
2h3a3

Q=

(29)

This is precisely the quality factor obtained in [1, eq. 707
by use of different methods. Detailed calculations confirm
the correctness of the other factorsin (16). Let us mention,
in this respect, that the interior magnetic field peaks to
values proportional to N The radiated fields are propor-
tional to N (and are therefore of order 1/N3 with respect
to the interior fields), and the radiated power is propor-
tional to N2

IV. SCATTERING BY DIELECTRIC
RESONATORS—THE NONCONFINED MODES

In the present paragraph we consider a dielectric
resonator immersed in an incident wave (£, H;). Our
purpose is to evaluate the interior and exterior fields in
the vicinity of a resonant frequency. The problem is of
technical interest, as the scattering response at resonance
can be utilized to measure the characteristics of the
dielectric material [5]; and to obtain information on the
size and shape of the particles (e.g., in a study of the
properties of interstellar dust).

A. Expansion of the Incident Field

Away frorn its sources, and in particular at the location
of the dielectric body, the incident field satisfies
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Jk
NR,

curl H; = E;

- k -
curl E; = —j% H,.

(30)

In and around the dielectric body (Fig. 3), we introduce
the expansions

= = Ba | Ea

E, =Ey+ N + N2+

- - gil flm

H; = Hy+ N + N2+ (31)

For the plane wave E; = A, exp [—j(kz/N)], for exam-
ple, (Fig. 3)

Eygy= Ad, H-@ = —1
! "R’
- o A '
Eil = _]kZAua: Hzl = — —‘]kzd,,. (32)
R,
The individual terms in (31) satisfy the equations
curl Hy = 0
- k-
| Hi = — E]z
cur 1 7 RO 0
curl E; = 0
curl Eiq = —jkRoH . (33)

B. Expansion of the Scattered Field

The total field (£,H) does not behave like the eigen-
vectors (Hp, curl H,,) in the vicinity of the dielectric.
It does not, in particular, decrease like 1/R? away from
the body. The set (H,,curl H,,) is therefore not suitable
to expand the total field outside the resonator. We rec-
ognize, however, (and this is a crucial remark) that the
additional field produced by the presence of the dielectric,
viz., :

=H - H;

S ™

(34)

has the same behavior as (H,,,curl H,,), and can therefore
usefully be expanded in these eigenvectors. We write

fo= 3 Bnln

] fffvwﬁoﬁm av
0 are

V+v/

(35)
where

B (36)

The evaluation of 8, rests on a knowledge of the equations
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Fig. 3. Dielectric resonator in an incident wave. Excitation of
nonconfined modes.

satisfied by A. Outside the dielectric, they are the same as
for the incident field, i.e., (33). Inside the dielectrie, the
total field satisfies

_ kRy -
E=—j—H
curl I
- 1.
cul # = ZNE (37)
R,
and the incident field
_ kRy -
1E; = —j— H;
cur I N
- gk -
cur R (38)
Subtraction gives
- kR -
curle = —j N h
_ gk .. gk 1) -
= — — —J)E.
curl & R Ne + RoN (1 e (39)

Equations for ¢ and % alone can be obtained by elimination.
They are

- - - 1
—curl curl e + k?e = —k2E; (1 - ﬁ)

. ~ _ 1
—curl curl b + k?h = —k2H; (1 — F) . (40)

2
These equations are fundamental. The right-hand mem-
bers are known, and can be regarded as sources for,
respectively, the e and % fields. To evaluate the numerator
in (36), we dot-multiply the equation for h with H,.,
and integrate. Thus

—f/f H,-curl curl i + k2 // h-H, dV
1’4 Vv
1 . -
—t —— 2 — ]
k (1 N2> ffVH A, dV. (41)

Utilizing the methods applied in [1, eqs. 18247 allows us
to transform the first integral into
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—/// H,-curl curl b dV
v
= — //f hecurl curl H,, dV
Vv

+ /f [(# X Hp)-curl b — (8, X h)-curl H,,]dS
8

—ko? ///VE-I_IM av ——//:Szpmﬁn-curl curl 4 dV

e 2/ \pafl‘ds

it

(42)

To arrive at the last equation we have written H, =
grad ¢, and h = grad ¢ outside and on S. The last
relationship implies that A has been replaced by its
zeroth-order term, hence that terms of order 1/N and
higher have been neglected. Further progress is made by
replacing curl curl & by its value taken from (40). The
surface integrals in (42) then add up to

R /‘/;\Pm(ﬂn'ﬁl) s — k2//;¢mg——id8

e 2/f¢%ds

Asin [1, eq. 237, the last two terms can be shown to stand

for
(w2 — 1) f// b, dV.
v

Collecting these various results leads to the following
contribution of a nonconfined mode H,, to the expansion

of h
/f;p,,,(m-il,.) dS—///Vﬁi-ﬁde
f/fvw,[ A, 12dv

The integrals in the numerator express the coupling
between H, and H,. An equivalent formulation in terms
of E;and curl I, is also possible. We give it without proof

f/sma,,.fm s — f[fVHH v

= —IE///‘EH ccurl H, dV. (44)

Expression (43) clearly shows that resonances occur for
k = kn. For high but finite N, the fields near resonance
are of the form

k2 — k2 H’" (43>

213
/f¢m(dngz) dS——/// ﬁiﬁde

2(ak/ka = 5/2Q) [[[ | Hulav

v+v/

H(r) ~ H. (7). (45)

C. Dielectric Resonator Innmersed in a Plane Wave

It is shown in [1, eq. 45] that the magnetic dipole
moment of a nonconfined mode H,, is given by

=///I]ﬁde—/[S¢mdndS=pmdm.

Here 4, is the unit vector in the direction of the dipole
moment. This expression allows one to write the coupling
coefficient (44) very concisely when the incident wave
is a plane wave. For such case, H, is a constant field H.y
in the limit of very high N, i.e., for very low frequencies.
It follows that (44) can be rewritten as — P+ H. This
value can now be inserted in (45). The peak field, reached
for the resonance condition Ak = 0, is

(46)

] . i’m'Hz’O - .GWNspm'I_{zO -
Hea = - Hm = - Hm
pesk = ¢ _ ot 1
f// | 7, 12 dV
Vv
(47)

where use has been made of the value of @ derived in
[1, eq. 437. The formula for H .. is seen to be remarkably
simple. An even more remarkable value is obtained for
the magnetic moment of the resonator at resonance, which
is, from (46) and (47),

6 3
_.7 s >‘03(H10)m

7rN
(Hzo)m = dr?

(Pm) peak &= ] (48)

In this equation, (11_( «0)m 18 the component of the incident
magnetic field along the direction of $,, and )\, is the
wavelength n vacuo. Formula (48) deserves additional
comments. It shows that, in the limit of very high e,, the
peak magnetic moment at resonance is independent of .,
the mode number, and the shape of the scatterer. These
parameters, however, influence the value of @, i.e., the

shape of the resonance curve. They also determine the
size of the resonator, which results from the equation

L=

77 N (49)
where (kL) moge is a characteristic value for each mode.
Notice also, from (48), that only the direction of p, must
be known to determine the magnetic moment. Information
as to the magnitude of p,, is not necessary for the purpose.

Knowledge of the dipole moment allows calculation of the
scattered power and of the scattering cross section at
resonance. Here again, the formula is of the utmost sim-
plicity
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S

The scattering cross section is maximum when the incident
magnetic field is parallel with the natural dipole moment
of the mode. At 10 GHz, for example, this maximum
value is 4.3 em?, irrespective of the shape, mode number,
and dielectric constant of the scatterer. These remarkable
properties hold only in the domain of validity of our
hypotheses, i.e., for free-space wavelengths Ay which are
large compared with the characteristic dimension L. Equa-
tion (50) obviously implies that the mode under considera-~
tion has a nonzero magnetic moment.

V. SCATTERING BY DIELECTRIC
RESONATORS—THE CONFINED MODES

A. Expansion of the Scattered Field

Evaluation of the expansion coefficient 8., as given in
(36), is more delicate for the confined modes. The right-
hand side in (41) is now a term of order 1/N. To prove
this assertion, let us show that the contribution from
H;, vanishes. From (33), Hi can be expressed as grad
Yi0. Therefore

[/Vﬁm-izmdv - f/];gradxho-ﬁde
- / /; (- Yioll) dS — /f /V Vadiv H,,dV.

This expression is zero because H,, vanishes along S, and
has zero divergence in V. As a result, the right-hand
member of (41) becomes

—kZ// A0, dv =
14

This result has an immediate implication: the surface
integral in (42) must be evaluated very carefully, up to
terms in 1/N. As H,, vanishes along S, this integral can
be written as

K. - .
— N// AgBdv. (1)

I= —ff (##n X R) -curl H,, dS.
8

Replacing curl H,, by its value in terms of E,;, as given
in (9), yields

I —ﬁ/ (s X ) -h dS
RoJJ,

" i )
— 2 [ (B’ X 2) R4S,

R() S
But £, the field outside S, is irrotational, and can

therefore be written as grad ¢,,1". Utilizing classical vector
relationships [3] allows one to further transform I as

_ _ﬂ 1o (47 A
1=-% /fs grad. b (i X ) dS
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'k _
- % / but div, (@, X F) 45

ik
= / Sm1’ (7n-curl &) dS

The exterior field A’ satisfies the equations given in (33)
for the incident field. In consequence, curl A’ can be
replaced by (1/N) curl A/, and

I =

/ Gt B curl by dS = / Pm1'€on’ dS.

RON VRO

The outside electric field e,’ can be expressed as grad ¢,
where ¢y’ is regular at infinity. Combining this fact with
1 basic reciprocity property proved in ['1, eq. 237 gives the
further transformation

(?_ﬂ — k? /:/ ’ Oy’
// ml dS AVRoz < ¢0 an dS. (52)

The factor (d¢n,1/0n) has been encountered in the general
theory of the confined modes (see [1, eq. 567]), where it
has been denoted by E1,."). The factor ¢’ can be replaced
by —éo.. It is indeed apparent, from (43), that the total
zeroth-order electric field must vanish in V, hence that
ey must be equal to — B, inside the resonator. Therefore

NRO

(éo’)tang = grads ¢0’ = (é0>tang = —grads ¢i0

where ¢, is the potential from which E. can be derived.
These considerations lead to

I =

f ¢0@En1 dS (53)

" NR¢

Our main hurdle has now been taken. With this value of
the surface integral, the determination of the expansion
coefficient 3,, becomes easy. We obtain, for the contribu-
tion of a confined mode to the expansion of A,

~ /f/‘,ﬁ“'gm av — (1/R¢*) f fs boiFln’ dS
o fofiflm |2dv

(54)

In the vicinity of the mode resonance, in particular, the
magnetic field is of the form

f / -, dV — (1/R) f f doill’ dS
a-— ’ .
IN (&l — /2Q) f//vj a, 2 dv

(55)
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Fig. 4. Body of revolution in an incident wave. Excitation of
confined modes.

B. Drielectric Resonator I'mmersed in a Plane Wave

The configuration of interest is sketched in Fig. 4.
A confined mode H,, = By possesses an electric dipole
moment (see [1, eq. 57])

Po = [%’//SEI'Z s —j]%//smﬁﬂ dS] i (56)

where 4, is a unit vector along the axis of revolution.
Careful evaluation of (54), where H;; and ¢ are replaced
by the values pertinent to a plane wave [see (32)7, leads
to the remarkable result

’ N _
// Hzl H dav — _/:/'¢01En1 ds = _'_'E'LO pe (57>

The field near resonance is therefore
- Eep, -
j . P ..
2u0(ak/kn = 3/2Q) [[[ | |2 av
14

(58)

From the value of @ given in (58) of [1], the peak value
of H is

67N3 é()
m®

20 pe

(H)peak_] |;0 |2

H,. (59)
The remarkable simplicity of the formulas for the non-
confined modes is seen to carry over to the confined modes.
The induced electric dipole moment at resonance is

61rN €0

(P)peak = —j T

(Ew) € (60)

where (E;), is the component of E, along the axis of
revolution. The peak scattering cross section turns out
to be

oo = 67I'N2IE10 uelz — é‘)\ozl

l E,,QP 21l'

e |2

.|

(61)

VI. SCATTERING BY A DIELECTRIC SPHERE—
CONFIRMATION OF THE GENERAL THEORY

A. Generalities

To check the validity of our previous analysis, and in
particular the correctness of the main results (45)—(50),
(55)~(61), we have considered the example of a dielectric
sphere immersed in a plane incident wave (Fig. 5). Here
separation of variables gives a solution for arbitrary
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Fig. 5. Dielectric sphere in incident plane wave.

N [2], [6]. Careful calculations (to be outlined below)
confirm that the general formulas yield correct results
here. Our concern lies, as usual, with the limit case
N — . Results for a few finite values of N (real and
complex) can be found in a recent article by Affolter and
Eliasson [77].

The method of solution proceeds by writing the fields as

E = curl curl (vRiig) — jwu curl (wRiz)

H = jwe curl (vRag) + curl curl (wRaz).  (62)

Different couples of functions (v,w) are used for the in-
cident plane wave, the scattered field, and the field in the
dielectric. The v and w functions are infinite series involv-
ing Legendre polynomials in cos f and spherical Bessel
and Hankel functions in kR. For very high values of N,
the dominant terms in (62) are, for the scattered field
(Fig. 5)

_ ko [1 . N]exp [—j(kR/N)T
Vye = J —N sin € cos ¢ 7 R R
 ka® .V ]exp [—j(kR/N)]
= 1 — by B-
Wse JRON smf)smzﬁ[ J kR] )

(63)

The incident wave is the plane wave described by (32).
Full expressions for 4 and B will not be given here. We
shall only mention that A has a denominator

Dy = (sin ka — ka cos ka)

1 a2 k2a? C2k3q? CRk3ad
\'"v e Tawm T e o
1 L2 k3a3
+ k%2 sin ka < —+ ek j 3N5> (64)

and that the denominator of B is

1 k*a? ka

v tom T

ka
—J s A
B. Confined Modes

Function v, generates the field of an eleciric dipole,
the magnetic field of which is transverse to the radial
direction. Resonances occur for

. k3ad
Dy = sin ka (1 — 7 m)

l .
+ La cos ka < ” (65)



216

sin ka — ka cos ka = 0 (66)

when N is infinite. This is the resonant condition for the
confined modes described in [1, eq. 67]. For high, but
finite values of N, a more careful analysis of the denomina-
tor is required. Setting its real part equal to zero gives
the actual resonant frequency, and consideration of its
imaginary part yields @. The values obtained by this
procedure turn out to be in perfect agreement with (28)
and (29). At each resonant frequency, A peaks to a value

Amax = — 225;; (67)
from which the far field is found to be
b= ;C%zlfz( e X i) 2P [—jéka/N)].
This is the field produced by an electric dipole
= +4radA e, (68)
The dipole moment at resonance is
- N3
(Pmex = =6 7= ot (69)

This value, and the resulting value of the scattering cross

section, are in complete agreement with the predictions of
(60) and (61)

C. Nonconfined Modes

Function w,, generates the field of a magnetic dipole, and
is responsible for the resonances of the nonconfined modes.
A careful study of the denominator of B, as given in (65),
confirms the values of resonant frequency and @ obtained
in (23) and (24). At resonance, B reaches a peak value

.3 N?
Bmax = =7 2 ]Cm3a3 (70)
which corresponds to a far field
_ lm3 3 —j(k.R/N
B = —B5% G a,) SBL J](R 7LD
This is the field produced by a magnetic dipole
- 1
P = G 4@ B, (72)
At a resonance frequency, P, reaches a value
6r N3 .
(Pm)max = _]R k8 Uy (73)

which is in complete agreement with the value obtained
in (48) for a scatterer of arbitrary shape.

D. The Sphere Between Resonances

Between resonances the sphere can be replaced, as a
scatterer, by the induced dipole moments (68) and (72).
The appropriate values for the coefficients can be derived
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from the general formulas. One finds, for very high N,

A=1
3 cos ka 1
B=-{——- ——-)~-=.
2 <k2a2 ka sin ka) 2 (74)
The scattering cross section of the sphere is
—_ — k 4a6(A2 + B2) oz — 7640,4 2(A2 ._I_ B2) (75)
T 3 ’ 3N "

This value is orders of magnitude lower than the value at
resonance, as given by (50) and (61). A numerical
example will illustrate the point. Consider a sphere of
er = 100 resonating at 10 GHz in the lowest noneconfined
mode (ka = ). The radius of the sphere is then 1.5 mm,
and the scattering cross section at resonance is 4.3 cm?.
At 9 GHz, A =1 and B = 0.82. The scattering cross
section is now 3 X 1073 cm?

Formulas (74) allow us to examine the behavior of the
sphere at very low frequencies. Well below the first
resonance, when the diameter of the sphere is small with
respect to the wavelength in the dielectric, the dipole
coefficients are A = 1 and B =~ 1/30 (ka)2. The magnetic
dipole moment is therefore negligible, and the electric
dipole moment has the (static) value corresponding to
a sphere of very high ¢ (which is also the value for a
perfectly conducting sphere). Let the frequency increase
monotonically. The magnetic moment P, increases slowly
until, for ka = =, it reaches a very high value at the first
“nonconfined” resonance. For ka = 4.49, the first “con-
fined”” resonance is excited, and the electric dipole moment
reaches a high value. Higher frequencies give rise to suc-
cessive higher order resonances. In between resonances,
however, A remains equal to one. This result, which holds
for sufficiently high values of N, implies that the electric
dipole moment keeps the (static) value associated with
a perfect conductor.

Curves for the scattering cross section of the sphere can
be found in the literature. Affolter and Eliasson, for
example [77], give computed data for a sphere of diameter
4 mm and dielectric constant ¢, = 100 (Fig. 6). The
predictions of our asymptotic formulas are in good agree-
ment with their results. From (50) and (61), indeed, the
scattering cross section for a dipole mode is seen to satisfy

Tse Ge,

(kma)?”

(76)

Ta?

For the magnetic dipole mode (k,a = ), which resonates
at 7.5 GHz in the limit & — o, we expect

gse 600

Ta 2

(77)
For the lowest electric dipole mode (k.o = 4.49), which
resonates at 10.7 GHz in the limit N — «, we expect

oe 600
T (4.49)2

= 20.8. (78)

wa?
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Fig. 6. Scattering cross section of a sphere as a function of frequency
(from [7]).

Both (asymptotic) results are in good agreement with
Fig. 6. Notice that the radar cross section of the sphere
is 1.5 o4, (1.5 being the gain of the induced dipole). We
therefore expect

Orad

= 0.912¢,

whe for the magnetic dipole
kg

= 0.447¢, for the electric dipole. (79)

These results are in good agreement with the published
data of Burr and Lo [5, fig. 2]].

The resonance peaks in Fig. 6 are sharp because the
value of N is (relatively) high. Ior low values of N, the
resonances are less pronounced. This is confirmed by
published data, given for N = 1.44 [7], [8], where the
first two resonances appear as mere bumps in the curve
o5, versus frequency.

The outlined behavior of the sphere is quite general,
and is typical for resonators of arbitrary shape. The curve
for ¢, has the general appearance depicted in Fig. 7,
where L is a typical dimension of the resonator. The curve
starts with a Rayleigh region OA in which ¢,,/L is propor-
tional with (kL)% and then shows resonance peaks super-
imposed on a smooth curve of the type encountered for
perfectly conducting scatterers. Between resonances the
fields in the resonator must remain bounded for N — oo .
From (37), this condition implies that the electric field
must be zero in V (Fig. 1). Continuity of Eyan therefore
requires £ to be perpendicular to S, which is precisely
the behavior associated with a perfect conductor. The
polarization charges p; are consequently identical for the
metallic and high-dielectric scatterers, which implies that
the electric dipole moments

}-),,://ps?—“ds

are also equal. An analog property does not exist for the
magnetic dipole moments. The essential reason is that H
has a nonzero normal component on the dielectric, while
H, must vanish on a perfect conductor.

It is shown in Section IV that the fields at resonance are
proportional with @;.4, and therefore that the peak scatter-
ing cross sections are proportional with Qr.a®>. When the
material is lossy, the formulas are still valid provided Q:qa

(80)
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Fig. 7. Typical variation of the scattering cross section of a di-
electric resonator as a function of frequency.

TABLE 1
% °raa Iraa
I(Qrad)pert leel Qtot TaZ (ﬂaz )pert (wa2 ) exact
magnetic dipole 56.27 250 45.9 45.6 30.38 29.85
electraic dipole 97.65 250 70.2  22.35 11.56 14.75

is replaced by Quot = (Qraa™! + Qaser™) ™" In particular,
the radar cross section must be given by

Orad _ (Q_tot>2 k)

702 \Qraa) mal
where ¢, is the value for the lossless material. The validity
of (81) can be checked on the published results of Burr and
Lo [5]. These authors give data for dielectric spheres of
permittivity extending only to e, = 50, a value for which
our asymptotic formulas should not be very accurate.

The agreement turns out to be satisfactory, however, as
seen from Table I relative to a dielectric constant

(81)

j .
=) = 50 — 70.2.
Q) /

In Table I the asymptotic values, computed from (79)
and (81), are denoted by the subscript “pert.”

The results for the magnetic dipole are better than
those for the electric dipole. This is to be expected, as the
sphere is smaller with respect to A\ at the magnetic reso-
nance than at the electric resonance.

/ . '
& = ¢ +je’ = e (1—
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