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TABLE 11
_-. -—. —___ -—.—__. _—-— ——, - .—

TMlol TMIO!
———-,.———— —.

Q., QPe,, (ka)e. 2a/x, LA. QM (ka).~ 2J/hI
——— .—— —

e, =14’ 4.1 4.21 0.358 Il. ? 7.9 7.69 0.65.5
50 82 97 4.38 0.210 23.7 19 7.59 0.364
86 330 375 4.43 0.152 62.5 74 7.61 0.261

—-z_— ___ ———...—— ——

P. = j (4Lr/iVc) kaz sin kati.

Q = N5/2k~3a3. (70)

The values lia = 4.49 and ka = 7.73 yield, respectively,

the TM1OI and Tlfllol modes of Gastine, for whkh the re-

sults shown in Table II hold.
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The Excitation of Diekdric Resonators of Very

tiigh Perrnittivity

JEANT VAN BLAD~L, FELLOW, IEEE

Absfrcwf—Tk response of d dielectric resonator excited by

either interior volume sources or incident exterior waves is invest.i- 2=2.+ ++ $+...

gated. Special attention is devoted td phenomena at resondce, and

in particular to the induced electric and magnetic dipoles. Simple

formulas are obtained for the scattering cross section. The material HI H2

of the resonator is assumed lossless and of very high permittivity. H= Ho+@-@””””
(1)

I. INTRODIJCTION

I N A PRJ3CJW1N G article [1] we have investigated the

nat{lre and properties of the modes of a dielectric

resonator of very high permittivity. In the present paper

we make use of the modal properties, and in particular of

the orthogcmality relationships, to investigate the excita-

tion of a resonator by interior volume sources or, more
realistically, by exterior incident fields. Our general method

of attack is to ass~une tluat the index of refraction N of the

(loss]ess) dielectric is large, and to expand the fields as

Manuwript received January 14, 1974; revised J\me 3, 1974, and
September 12, 1974.

The author is with the Laboratory for lllectromagneti~m and
Acoustics, the University of Ghent, (3hent, Belgium.

These expansions are inserted in Maxwell’s equations, and

terms of equal orders on both sides of these equations are

equated. The mechanics of the procedure will be described

in subsequent paragraphs. Our main purpose is to deter-

mine the dominant terms in (1), and in particular the

behavior of these terms in the vicinity of a resonance
k = km,. In the limit N -+ ~, the magnetic field ~. near

resonance must be proportional to the relevant eigeuvector
ti~, solution of [1],

curl }~~ = O in V’. (2)

Theie eigenvect ors satisfy the important orthogonality

properties [1]
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//.7
H..HPdV = O

V+vf

l..
curl ~W. curl HP dV = O. (3)

v

II. EXCITATION OF A DIELECTRIC RESONATOR

BY INTERIOR SOURCES—GENERAL FORMULAS

The configuration of interest is depicted in Fig. 1. It is

shown in [1] that the expansion for @ contains only odd

terms in l/N, hence that the dominant term of the expan-

sion is fil/N. We shall expand fil in the (orthogonal) set

curl ~~. This set is solenoidal, and should be completed

by irrotational elements.1 The latter, however, do not give

rise to resonance phenomena [2]. We shall therefore keep

only solenoidal terms in the expansion for $1, and write

the following expression (which represents the solenoidal

part of Xl)

(Zl) ,.l = Z a. curl Em = Z a.xm in V (4)

where

l..
~1. curl H. dV

v
am = (5)

///
] curl Em 12cZV

v

To evaluate the numerator, consider the basic differential

equation for El, which can easily be derived from Maxwell’s

equations

– curl curl El + lcz~l = j%R~. (6)

Here k is the wavenumber in the dielectric, and RO =

1207rf2 is the characteristic resistance of vacuum. Dot-

multiplying (6) with & = curl H~ gives, after integra-

tion over V,

—
///

A~. curl curl ~, dV + kz
///

~..~, dV
v v

= jlcRo
///

JCL w. (7)
v

1The irrotational elements, which should be included in regions
where real charges are present, are of the form grad o., where

v%. + knZ4. = o in V

v~q$m= o in V)

+. continuous on 8

& regular at infinity (i.e., of order I/R).

It is easy to show that grad O. is orthogonal to Hfi and curl Hm, in
the sense that

///
Hm.grad @n dV = O

V+v!

//.7curl H~ -grad & dV = O.
v

It is also essy,_making use of [1, eq. 20] to calculate the expansion
coefficient of El in terms of grad +., and to show that it does not
evidence any resonance properties.

The

I=

.
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Fig. 1. Dielectric resonator with interior sources,

first integral can be transformed as follows

—
!/!

~~. curl curl fil dV
v

—
W l?,. curl curl ~~ dV

JJJV

(8)

From (2), and because (see [1, eq. 3])

curl El = —jlcRoHo (9)

we find

I = –k~2
Ill

~1..& dV
v

/.!.!– jkR, (tin X curl fi~). E, dS
s

The surface integrals in the second member can be trans-

formed by the methods utilized in [1, eqs. 18–24]. Detailed

calculations, not to be given here in detail, show that

these integrals cancel each other. We can now combine

(7) and (10) to obtain

from which we deduce the expansion

E, = NE

(12)

The magnetic field can similarly be expressed as
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\.I/~“ curl H. dV
v

= -x 17m. (13)

(k’ – km’) l.v lH~12dV
v+v~

Here use has been made of the relationship

normalization integrals (see [1, eq. 28]).

between

J.1.TI curl ~~ l’ dV = km’
/.!/

\ ~~ l’ dV. (14)
v V+vf

The expansions for E and H show that the fields reach

infinite values at the resonant wavenumbers k = lc~. In

fact, if we denote by Ah the wavenumber difference

k – km, HO near resonance is given by

!!/
~. curl ~~ dV

v
HoE— Hm. (15)

2(A~/k~) ~~~ ] curl ~~ 1’ dV
v

Expression (15) represents the magnetic field in the limit
N ~ ~. For high, but jinite values of N, two things will

happen. First, the resonant frequency suffers a slight

shift. This is a minor phenomenon, which will not be

investigated here. Second, the infinite resonant amplitude

is leveled off by the radiation losses, which introduce a

finite Q, and a factor [( Ak/lc~) – (j/2Q) ] instead of

Ak/k~ in (15). Thus

///
~.curl H~ dV

v
H%– Hm. (16)

2 (Ak/k~ – j/2Q) ~~~ I curl i?~ 1’ dV
v

The numerator ~j~v ~ ocurl ~n dV expresses the cou-

pling between the mode and the current distribution.

For a source in the form of a concentrated electric dipole

P., for example,

(17)

where curl ~~ is the value at the location of the dipole.

For a concentrated magnetic dipole ~~

(18)

where H~ is the value at the location of the dipole.

III. EXCITATION BY INTERIOR SOURCES—

VERIFICATION OF THE FORMULAS

A. Sphere Excited by a Magnetic Dipole

Equations such as (12), (13), or (16) are new, and

must therefore be checked against configurations for

which an exact solution exists. We ha-ve performed this

verification in two cases. First, we have investigated a

dielectric sphere excited by a magnetic dipole located

at its center [Fig. 2(a)] This configuration happens to

be of technical interest, as the radiation resistance of the

dipole at resonance peaks to a substantially higher value

than in free space. This property allows one to match the

very low impedance of electrically short antennas to their

feeding generators. Considerable reduction of antenna

dimensions compared with the usual half- and quarter-

wave antennas can then be obtained [3], [4]. Our purpose,

however, is not to dwell upon these aspects, but to solve

the problem theoretically. Separation of variables yields

a solution which is valid for arbitrary N, and which allows

detailed investigation of the limit process N ~ cu. The

electric field is purely azimuthal. Inside the resonator it is

. kR,P~
Eb= –~~sintl

(

exp ( –jkR) exp ( –jkR)
R2

+jk R

)

. lcROP~ ~ sin ~ sin lGR

(

k cos kR— —
– 3 4TN R2 R )

. (19)

Outside

E4=–
jkRo
~N P. sin (3C

(

exp ~ –j (kR/LN) ]
R2

+ ~ ~ exp [–j(kR/N) ]

N R )
(20)

We shall not evaluate coefficients B and C explicitly: they

can easily be obtained from an application of the boundary

conditions at R = a. The calculations show that B and C

have a common denominator

D=sinka +j~sinka+$(kacoska –sinks).

(21)

Assume first that N is infinite. For such case, the denomina-

tor is zero for sin ka = O, i.e., precisely at the resonant

frequencies of the +-independent nonconfined modes given

by [1, eqs. 63, 64]. The fields are infinite at resonance,

and it can be verified that the values of B and C are

exactly those predicted by (12) and (18). Let us now

examine the effect of a high, but finite N. The most

interesting phenomenon is the leveling off of the resonance

peak. The exact values of the fields can again be obtained
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(a) (b)

Fig. 2. Dielectric sphere excited by the following. (a) A magnetic
dipole. (b) An electric dipole.

from a study of the coefficients B and C. The common

denominator in these expressions takes the form

[

lc~a

1
a cos k.a Ale + ~ + jAlc ~ . (22)

This formula shows that the resonant frequency is shifted

to a slightly different value, given by

km’ = km ()l–~. (23)

The frequency-excursion with respect to km’ is Ale’ =

lC – km’. In terms of this increment, (22) can be written as

l’macOsk.a[H$l
But the characteristic denominator for a damped resonance

is of the form [(Ale/k) — (j/2Q) ]. We conclude that the

quality factor of the mode is given by

(24)

which is precisely the value calculated by other means in

[1, eq. 66]. There is therefore agreement with the factor

[( Ak/k~) – (j/2Q) ] appearing in the denominator of

(16). Detailed calculations confirm the correctness of the

other factors in (16). They also show that the fields peak

to values proportional to Ns (for ~) and N2 (for l?) in

the vicinity of the sphere, and to N in the far field.

B. Sphere Ezcited by an Electric Dipole

Let us now investigate the fields produced by an electric

dipole in the center of the sphere [Fig. 2(b)]. Here (17)

predicts that the confined modes only are excited, hence

that the boundary surface acts as a magnetic wall. These

predictions are confirmed by an exact analysis, which can

be carried much as in the preceding paragraph. The
magnetic jielcl is azimuthal in this case, and is given by

Hti=j&7P. sin0
(

exp ( –jkR)

)

exp ( – jlcR)

R2
+jk R

.

lCC

+j — P, sin $B
(

sin kR
—–k

4TN RZ )
% (25)

in the dielectric, and
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H4 = j&N Pe sin 5C
(

exp [–j(lcR/N) ]
R2

+ j~ exp [–j(kR/N) ]

)
(26)

N ‘R

outside the dielectric. The coefficients B and C’, which can

be determined through the boundary conditions at R

have the common denominator

( lca jka
D= (kacoska–sinks) l+j X–~– —

N3
)

ksas cos liXI li3a3 sin l;a
—

N2 ‘] lw “

For N -i w, resonances occur for ka cos ha – sin ka

. a)

(27)

. 0,

i.e., precisely for the resonant frequencies of the (@-

independent ) confined modes given in [1, eq. 67]. For N

high, but finite, the resonant frequency is shifted to a new

value, obtained by setting the real part of the denominator

equal to zero. This gives the new wavenumber

()k~’=k. l–~ . (28)

A few calculations show that D can be put in the form

‘= -km’a’sin’ma(F-+?)
where

Q==
21;m3a3“

(29)

This is precisely the quality factor obtained in [1, eq. 70]

by use of different methods. Detailed calculations confirm

the correctness of the other factors in (16). Let us mention,

in this respect, that the interior magnetic field peaks to

values proportional to N*. The radiated fields are propor-

tional to .$’ (and are therefore of order l/AT3 with respect

to the interior fields), and the radiated power is propor-

tional to .372,

IV. SCATTERING BY DIELECTRIC

RESONATORS–-THE NONCONFINED MODES

In the present paragraph we consider a dielectric

resonator immersed in an incident wave (E,, ~~). Our

purpose is to evaluate the interior and exterior fields in

the vicinity of a resonant frequency. The problem is of

technical interest, as the scattering response at resonance

can be utilized to measure the characteristics of the

dielectric material [5]; and to obtain information on the

size and shape of the particles (e.g., in a study of the

properties of interstellar dust) .

A. Expansion of the Incident Field

Away from its sources, and in particular at the location

of the dielectric body, the incident field satisfies
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kRo -
curl E~ = —j ~ Hi. (30)

In and around the dielectric body (Fig. 3), we introduce

the expansions

Ei~ Ei2
E%= Eio+~+~2 +”””

Fig. 3.

@

/
‘m

w, -

‘Hi ,x

b
,’

Ei

. . . ---- -
2.

T
v

Dielectric resonator in an incident wave.
nonconfined modes.

Excitation of

satisfied by ~. Outside the dielectric, they are the same as

fi.j=.BiiJ +$+ ~+”...
~31) for the incident field, i.e., (33). Inside the dielectric, the

total field satisfies

For the plane wave ~i = Atim exp [ –j (kz/N) ], for exam-

ple, (Fig. 3)

~il = –jkzA& H%l = – ~jkz~v.

The individual terms in (31) satisfy the equations

kRO -
curl E = —j ~H

(32)
and the incident field

kRO -
curl Ei = —j ~ Hi

curl fiio = O jk ~

k-
curl fi~ = —

RON ‘“
curl Hil = j — Eio

R,

curl Zio = O Subtraction gives

curl Eil z —jkRoHiO. (33) curl Z =

B. Expansion of the fjcattered Field

The total field (~,H) does not behave like the eigen-

vectors ( H~, curl Hn) in the vicinity of the dielectric.

It does not, in particular, decrease like l/R8 away from

the body. The set ( ~w,curl ~~) is therefore not suitable

to expand the total field outside the resonator. We rec-

ognize, however, (and this is a crucial remark) that the

additional field produced by the presence of the dielectric,

viz.,
~=fi-~i

i= H–Hi (34)

has the same behavior as ( ~~,curl fi~), and can therefore

usefully be expanded in these eigenvectors. We write

Ii = ~ pine. (35)

where

curl I =

(37)

(38)

()~N2+$N I–+ “Ei. (39)

Equations for Z and k alone can be obtained by elimination.

They are

()—curl curl ~ + k2Z = —kz@i 1 — ~

()—curlcurl~ + kzh = —kz@i 1 — & . (40)

These equations are fundamental. The right-hand mem-

bers are known, and can be regarded as sources for,

respectively, the Z and fi fields. To evaluate the numerator
in (36), we dot-multiply the equation for ~ with E-,

and integrate. ‘Thus

f?m = (36)

/.!/
] ~~ l’dV = -k2(1-WJJvBi”Emdv “’)

V+vl
Utilizing the methods applied in [1, eqs. 18–24] allows us

The evaluation of& rests on a knowledge of the equations to transform the first integral into
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—

///
l%. curl curl ii cZV

v

.—
///

il. curl curl B~ dV
v

+ ~~ [(% X ~~) “curl h – (%x i) -curl ti~] dS
s

= _~m2

/.1/

i.Hm dV –
/,

tj~tifi. curl curl k dV
v s

+ k.’
/.

# ~ dS. (42)
s

To arrive at the last equation we have written ~~ =

grad ~~ and k = grad 4 outside and on S. The last

relationship implies that ~ has been replaced by its

zeroth-order term, hence that terms of order l/N and

higher have been neglected. Further progress is made by

replacing curl curl k by its value taken from (40). The

surface integrals in (42) then add up to

_ ]C2
/’ //

&(zL. H,) dS – lc2 ti~ $ dS
s s

//
+ lc.t lj ~ dS.

s

As in [1, eq. 23], the last two terms can be shown to stand

for

(km’ – k’)
!//

h. H~ dV.
v!

Collecting these various results lea~s to the following

contribution of a nonconfined mode H~ to the expansion

of i

~’ +m(am.~,) dS - ~~~ H,cH. dV
~2 s v

~2 _ ~m2
Z?m. (43)

//.!
I Hrn l’dV

V!-vt

The integrals in the numerator express the coupling

between ~, and ~~. An equivalent formulation in terms

of fii and curl ~~ is also possible. We give it without proof

~~ +.(zL.H,) dS - ~~~ H,*H. dV
s v

~.——
/!/

~,1.curl H~ dV. (44)
kRo v

Expression (43) clearly shows that resonances occur for

k = L. For high but finite N, the fields near resonance

are of the form

C. Dielectric Resonator Immersed in a Plane Wave

It ii shown in [1, eq. 45] that the magnetic

moment of a nonconfined mode H~ is given by

Here Z& is the unit vector in the direction of the

213

(45)

dipole

(46)

dipole

moment. This expression allows one to write the coupling

coefficient (44) very concisely when the incident wave

is a plane wave. For such case, ~, is a constant field ~tO

in the limit of very high N, i.e., for very low frequencies.

It’ follows that (44) can be rewritten as – Z%. fi,~. This

value can now be inserted in (45). The peak field, reached

for the resonance condition Ak = O, is

iipe.k = –jQ
‘)i~ o12i~ - _.61rNJfk. H%o-— H.H~= ~ ~m3 ]fjm]’

///
I Hrn \2dV

V+vf
(47)

where use has been made of the value of Q derived in

[1, eq. 43]. The formula for &P.a~ is seen to be remarkably

simple. An even more remarkable value is obtained for

the magnetic moment of the resonator at resonance, which

is, from (46) and (47),

In this equation, (~io) ~ is the component of the incident

magnetic field along the direction of pm, and A. is the

wavelength in vacuo. Formula (48) deserves additional

comments. It shows that, in the limit of very high c,, the

peak magnetic moment at resonance is independent of ~.,

the mode number, and the shape of the scatterer. These

parameters, however, influence the value of Q, i.e., the

shape of the resonance curve. They also determine the

size of the resonator, which results from the equation

L= +N (kL) . . . . (49)

where (kL) ~ode is a characteristic value for each mode.
Notice also, from (48), that only the direct ion of fi~ must

be known to determine the magnetic moment. Information

as to the magnitude of pm is not necessary for the purpose.

Knowledge of the dipole moment allows calculation of the
scattered power and of the scattering cross section at

resonance. Here again, the formula is of the utmost sim-

plicity
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The scattering cross section is maximum when the incident

magnetic field is parallel with the natural dipole moment

of the mode. At 10 GHz, for example, this maximum

value is 4.3 cm2, irrespective of the shape, mode number,

and dielectric constant of the scatterer. These remarkable

properties hold only in the domain of validity of our

hypotheses, i.e., for free-space wavelengths ho which are

large compared with the characteristic dimension L. Equa-

tion (50) obviously implies that the mode under considera-

tion has a nonzero magnetic moment.

V. SCATTERING BY DIELECTRIC

RESONATORS—THE CONFINED MODES

A. Expansion of the Scattered Field

Evaluation of the expansion coefficient Dm, as given in

(36), is more delicate for the confined modes. The right-

hand side in (41) is now a term of order I/N. To prove

this assertion, let us show that the contribution from

~~o vanishes. From (33), i?;o can be expressed as grad

~io. Therefore

This expression is zero because H% vanishes along S, and

has zero divergence in V. As a result, the right-hand

member of (41) becomes

This result has an immediate implication: the surface

integral in (42) must be evaluated very carefully, up to

terms in I/N. As ~n vanishes along S, this integral can

be written as

Replacing curl ~n by its value in terms of ~~1, as given

in (9), yields

But &I’, the field outside S, is irrotational, and can

therefore be written as grad &l’. Utilizing classical vector

relationships [3] allows one to further transform 1 as

jk.— /!R, s
%1’ div, (% x E) dS

jk—_—.——..
!!RO ~

&l’(~~. curl i’) dS.

The exterior field h’ satisfies the equations given in (33)

for the incident field. In consequence, curl i’ can be

replaced by (l/N) curl 11’, and

The outside electric field .Zo’can be expressed as grad ~o’,

where 40’ is regular at infinity. Combining this fact with

a basic reciprocity property proved in [1, eq. 23] gives the

further transformation

The factor ( t@~J&z) has been encountered in the general

theory of the confined modes (see [1, eq. .56]), where it

has been denoted by E1~’). The factor +0’ can be replaced

by – 40,. It is indeed apparent, from (43), that the total

zeroth-order electric field must vanish in V, hence that

ZOmust be equal to —l?,~ inside the resonator. Therefore

(ZO’)i~~g = grad, @o’ = (ZO)i~~, = –grad. @io

where 4i0 is the potential from which @,o can be derived.

These considerations lead to

(53)

Our main hurdle has now been taken. With this value of

the surface integral, the determination of the expansion

coefficient ~~ becomes easy. We obtain, for the contribu-

tion of a confined mode to the expansion of ii,

!!/ I?il. I?m dV – ( l/R02)
U

40~En,’ d~
~2 v s

—

~2 – km2

N~~~ [ H. 1’ dV
v

(54)

In the vicinity of the mode resonance, in particular, the

magnetic field is of the form

H=
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Fig. 4. Body of revolution in an incident wave. Excitation of Fig. 5. Dielectric sphere in incident plane wave.
confined modes.

B. Dielectric Resonator Immersed ina Plane Wave

The configuration of interest is sketched in Fig. 4.

A confined mode H~ =p~b possesses an electric dipole

moment (see [1, eq. 57])

where tie is a unit vector along the axis of revolution.

Careful evaluation of (54), where ~iland@O~ are replaced

by the values pertinent to a plane wave [see (32)], leads

to the remarkable result

The field near resonance is therefore

N [2], [6]. Careful calculations (to be outlined below)

confirm that the general formulas yield correct results

here. Our concern lies, as usual, with the limit case

N - co. Results for a few finite values of N (real and
complex) can be found in a recent article by Affolter and

Eliasson [7].

The method of solution proceeds by writing the fields as

~ = curl curl (vRz.z~) – jap curl (wR~~)

E = jtic curl (vRti~) + curl curl (WRZZR). (62)

Different couples of functions (v,w) are used for the in-

cident plane wave, the scattered field, and the field in the

dielectric. The v and w functions are infinite series involv-

ing Legendre polynomials in cos 8 and spherical Bessel

and Hankel functions in kR. For very high values of N,

the dominant terms in (62) are, for the scattered field

Rio-~. (Fig. 5)
H= i%. (58)

2Ko(Alc/k~ – j/2Q) /// IHm1’dV v,C

v “%sinecos’[l-’# exp[-Y’N)]A

~a3
From the value of Q given in (58) of [1], the peak value W,C = j —

of E is RON ‘in’sin’[l-’&lexp’-N)]B]B

. 61r1V3e0~,o.pe ~ (63)
(~)p,ak = j ~ ~ m. (59)

The incident wave is the plane wave described by (32).

The remarkable simplicity of the formulas for the non- Full expressions for A and B will not be given here. We

confined modes is seen to carry over to the confined modes. shall only mention that A has a denominator

The induced electric dipole moment at resonance is

(60)

where (~~) e is the component of E% along the axis of

revolution. The peak scattering cross section turns out

to be

D1 = (sin ka – ka cos ka)

(
]lzaz ~3a3

+ lc2a2sin ka
)

$+~–j@ (64)

67TN’ ] 17io. 3ie I2 Ifitelz—— .;io2-
and that the denominator of B is

‘s’ – ~mz ] ~io \z lE,12”
(61)

(

kza’
Dz= sinka l–$+=+j$, –j—

)

~3a3

VI. SCATTERING BY A DIELECTRIC SPHERE— 31V3

CONFIRMATION OF THE GENERAL THEORY

A. Generalities “tacos’’a(++l ‘(65)

To check the validity of our previous analysis, and in

particular the correctness of the main results (45)-(50), B. Confined Modes

(55) –(61 ), we have considered the example of a dielectric Function v~c generates the field of an electric dipole,
sphere immersed in a plane incident wave (Fig. 5). Here the magnetic field of which is transverse to the radial
separation of variables gives a solution for arbitrary direction. Resonances occur for
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sinlca — kacoska = O (66)

when N is infinite. This is the resonant condition for the

confined modes described in [1, eq. 67]. For high, but

finite values of N, a more careful analysis of the denomina-

tor is required. Setting its real part equal to zero gives

the actual resonant frequency, and consideration of its

imaginary part yields Q. The values obtained by this

procedure turn out to be in perfect agreement with (28)

and (29). At each resonant frequent y, A peaks to a value

from which the far field is found to be

~m2a3

H=A ~ (% x %)
exp [ –j (k~R/N) ]

R

Thk is the field produced by an electric dipole

~. = +4ra3A eOZ.Z..

The dipole moment at resonance is

(67)

(68)

(69)

This value, and the resulting value of the scattering cross

section, are in complete agreement with the predictions of

(60) and (61)

C. Nonconjined Modes

Function W,c generates the field of a magnetic dipole, and

is responsible for the resonances of the nonconiined modes.

A careful study of the denominator of B, as given in (65),

confirms the values of resonant frequency and Q obtained

in (23) and (24). At resonance, B reaches a peak value

(70)

which corresponds to a far field

This is the field produced by a magnetic dipole

~. = ~ 4ra3B~V. (72)

At a resonance frequency, ~~ reaches a value

(73)

which is in complete agreement with the value obtained
in (48) for a scatterer of arbitrary shape.

D. The Sphere Between Resonances

Between resonances the sphere can be replaced, as a

scatterer, by the induced dipole moments (68) and (72).

The appropriate values for the coeficier$s can be derived

from the general formulas. One finds, for very high N,

A=l

(B=:&, –
cos ka

)

1

kasinka ‘~”
(74)

The scattering cross section of the sphere is

83r 8 k4a4
– ~k&aG(A’ + B’) = –—U$c— 3 ~4 ra’(A2 + B’). (75)

This value is orders of magnitude lower than the value at

resonance, as givefi by (50) and (61). A numerical

example will illustrate the point. Consider a sphere of

e~ = 100 resonating at 10 GHz in the lowest nonconfined
mode (ka = r). The radius of the sphere is then 1.5 mm,

and the scattering cross section at resonance is 4.3 cm’.

At 9 GHz, A = 1 and B = 0.82. The scattering cross

section is now 3 X 10–3 cm2.

Formulas (74) allow us to examine the behavior of the

sphere at very low frequencies. Well below the first

resonance, when the diameter of the sphere is small with

respect to the wavelength in the dielectric, the dipole

coefficients are A = 1 and B w 1/30 (ka) 2. The magnetic

dipole moment is therefore negligible, and the electric

dipole moment has the (static) value corresponding to

a sphere of very high e, (which is also the value for a

perfectly conducting sphere). Let the frequency increase

monotonically. The magnetic moment ~~ increases slowly

until, for ka = r, it reaches a very high value at the first

‘(nonconfined’) resonance. For ka = 4.49, the first “con-

fined” resonance is excited, and the electric dipole moment

reaches a high value. Higher frequencies give rise to suc-

cessive higher order resonances. In between resonances,

however, A remains equal to one. This result, which holds

for sufficiently high values of N, implies that the electric

dipole moment keeps the (static) value associated with

a perfect conductor.

Curves for the scattering cross section of the sphere can

be found in the literature. Affolter and Eliasson, for

example [7], give computed data for a sphere of diameter

4 mm and dielectric constant t, = 100 (Fig. 6). The

predictions of our asymptotic formulas are in good agree-

ment with their results. From (.50) and (61 ), indeed, the

scattering cross section for a dipole mode is seen to satisfy

Usc 6e,— .—
~az (k~a) 2-

(76)

For the magnetic dipole mode (k~a = T), which resonates

at 7.5 GHz in the limit :V ~ @, we expect

u.. 600—=— = 60.8.
~~’ ‘T’

(77)

For the lowest electric dipole mode (k~a = 4.49), which

resonates at 10.7 GHz in the limit N - co, we expect

(78)
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Fig. 6. Scattering crosssection of a sphere asa function of frequency
(from [7]).

Both (asymptotic) results are in good agreement with

Fig. 6. Notice that the

is 1.5 a,. (1.5 being the

therefore expect

vr ad
— = 0.912E,
ra2

= o.447e,

radar cross section of the sphere

gain of the induced dipole). We

for the magnetic dipole

for the electric dipole. (79)

These results are in good agreement with the published

data of Burr and Lo [5, fig. 2].

The resonance peaks in Fig. 6 are sharp because the

value of N is (relatively) high. For low values of N, the

resonances are less pronounced. This is confirmed by

published data, given for N = 1.44 [7], [8], where the

first two resonances appear as mere bumps in the curve

USCversus frequency.
The outlined behavior of the sphere is quite general,

and is typical for resonators of arbitrary shape. The curve

for u,C has the general appearance depicted in Fig. 7,

where L is a typical dimension of the resonator. The curve

starts with a Rayleigh region OA in which u,./L is propor-

tional with (lcL) 4, and then shows resonance peaks super-

imposed on a smooth curve of the type encountered for

perfectly conducting scatterers. Between resonances the

fields in the resonator must remain bounded for N -+ m .

From (37), this condition implies that the electric field

must be zero in V (Fig. 1). Continuity of ~t~~ therefore

requires ~ to be perpendicular to S, which is precisely

the behavior associated with a perfect conductor. The

polarization charges PS are consequently identical for the

metallic and high-dielectric scatterers, which implies that

the elec~ric dipole moments

Fe =
!/

p.; dS (80)
s

are also equal. An analog property does not exist for the

magnetic dipole moments. The essential reason is that ~
has a nonzero normal component on the dielectric, while

H. must vanish on a perfect conductor.
It is shown in Section IV that the fields at resonance are

proportional with Q,,d, and therefore that the peak scatter-

ing cross sections are proportional with Q,~d.2.When the

material is 10SSY,the formulas are still valid provided Q,ad

I

kL=Nko L

Fig. 7. Typical variation of the scattering cross eection of a di-
electric resonator as a function of frequency.

TABLIZ I

“0 ‘radtQ=a~)P.r~Qd,,l ‘t.t ~ (z) pert (~) exact

m?.gnetled~pole 56.27 250 45.9 45.6 30.38 29.85
ele.kxx dl~O1e 97.65 250 70.2 22.35 11.56 14.75

is replaced by Qt~t = (Q,,d-’ + Qdi.l-’) ‘1. In particular,
the radar cross section must be given by

Urad

( )-

Qtot 2 uo—= —

7ra2 Qr,d m22
(81)

where ui3is the value for the lossless material. The validity

of (81) can be checked on the published results of Burr and

Lo [5]. These authors give data for dielectric spheres of

permittivity extending only to c, = 50, a value for which

our asymptotic formulas should not be very accurate.

The agreement turns out to be satisfactory, however, as

seen from Table I relative to a dielectric constant

In Table I the asymptotic values, computed from (79)

and (81 ), are denoted by the subscript “pert .“

The results for the magnetic dipole are better than

those for the electric dipole. This is to be expected, as the

sphere is smaller with respect to k. at the magnetic reso-

nance than at the electric resonance.
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